Large-Scale Exploratory Analysis, Cleaning, and Modeling
for Event Detection in Real-World Power Systems Data

Ryan Hafen
Pacific Northwest National Laboratory
ryan.hafen@pnnl.gov

Kerstin Kleese van Dam
Pacific Northwest National Laboratory
kerstin.kleesevandam@pnnl.gov

ABSTRACT

In this paper, we present an approach to large-scale data
analysis, Divide and Recombine (D&R), and describe a hard-
ware and software implementation that supports this ap-
proach. We then illustrate the use of D&R on large-scale
power systems sensor data to perform initial exploration,
discover multiple data integrity issues, build and validate
algorithms to filter bad data, and construct statistical event
detection algorithms. This paper also reports on experiences
using a non-traditional Hadoop distributed computing setup
on top of a HPC computing cluster.

Categories and Subject Descriptors

J.2 [Computer Applications in Physical Sciences and
Engineering|: Engineering

Keywords

Power Systems, Phasor Measurement Unit, Divide and Re-
combine, Exploratory Data Analysis, Hadoop, R

1. INTRODUCTION

In application areas involving large-scale distributed sen-
sor networks, prior to deploying algorithms over high per-
formance computing and networking infrastructures, it is
important to consider the validity of the algorithms and of
the sensor data itself. Real-world sensor data presents many
challenges such that algorithms developed from the study of
simulations, physical models, or experience of domain ex-
perts are generally inadequate when applied directly to the
data. Additional work is frequently required to validate or
adapt these approaches to the reality presented by the cap-
tured data, or to discover better models and algorithms.

Building and validating algorithms that capture phenom-
ena of interest in real-world large-scale data sets is not a
simple task. As we don’t know what to expect in the data,

ACM acknowledges that this contribution was authored or co-authored by
an employee, contractor or affiliate of the United States government. As
such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes
only.

HiPCNA-PG ’13 November 17-21 2013, Denver, CO, USA

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-2510-3/13/11 ...$15.00
http://dx.doi.org/10.1145/2536780.2536783.

Tara D. Gibson
Pacific Northwest National Laboratory

tara@pnnl.gov

Terence Critchlow
Pacific Northwest National Laboratory
terence.critchlow@pnnl.gov

analysis is typically exploratory and iterative and requires
a great deal of flexibility in numerical and visual methods
applied. Also, as some phenomena are rare, it is difficult
to look only at small subsets of the data, and we need tools
that allow us to apply analytical methods at scale with great
ease.

Exploratory analysis and data cleaning is an incredibly
important but difficult and time consuming task, which in
the experience of practitioners, constitutes 80% of the effort
that determines 80% of the value of the ultimate analysis
results [5]. For large data, the task is even more difficult
because the traditional tools do not scale. Regardless of
size, to be effective we must be able to look at all the data
in great detail.

In this paper, we illustrate the use of a methodological
analysis approach and computing environment to to explore
and clean a 2 TB power grid data set. This data comes from
a distributed network of Phasor Measurement Unit (PMU)
sensors throughout the grid reporting measurements at high
temporal resolution. The data is being used to support real-
world decision support systems for wide-area power grid sit-
uation awareness, reliability, and emergency management.
There will be many down-stream analyses applied to this
data and hence its integrity and the integrity of the algo-
rithms is critical.

PMU data is a relatively new data stream for power engi-
neers, and as a result the characteristics of the data stream
are not well understood. In order to effectively explore,
clean, and analyze the data, we need an analysis approach
that allows us to identify uncommon patterns within the
data and validate these patterns with domain experts, but
which does not require the experts to be able to model these
events in advance. Exploratory data analysis meets this re-
quirement.

To accomplish our analysis, we use an approach called Di-
vide and Recombine (D&R), using a software and hardware
environment that allows us to write code in the R statis-
tical programming environment with distributed computa-
tions being executed on a Hadoop cluster. This provides the
flexible rapid development and iterative analysis capabilities
required for our analysis as well as the required scalability.
As this is an important aspect of the analysis, we discuss
this D&R and its computing environment in Section 2. In
section 3, we describe the data and Section 4 outlines our
analysis results. Finally, we presents results of a scalability
study of our environment applied to replications of this data
in Section 5.

Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2013

2. REPORT TYPE

3. DATES COVERED
00-00-2013 to 00-00-2013

4. TITLEAND SUBTITLE

L arge-Scale Exploratory Analysis, Cleaning, and Modeling for Event
Detection in Real-World Power Systems Data

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Pacific Northwest National L aboratory,902 Battelle
Boulevard,Richland,WA 99352

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR’'S REPORT

NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

3rd Int'l Workshop on High Performance Computing, Networking and Analytics for the Power Grid

(HIPCNA-PG ?13), 17-21 Nov 2013, Denver, CO.

14. ABSTRACT

In this paper, we present an approach to large-scale data analysis, Divide and Recombine (D& R), and
describe a hardwar e and softwar e implementation that supportsthis approach. Wethen illustrate the use
of D& R on large-scale power systems sensor datato perform initial exploration discover multiple data
integrity issues, build and validate algorithmsto Iter bad data, and construct statistical event detection
algorithms. This paper also reportson experiences using a non-traditional Hadoop distributed computing

setup on top of a HPC computing cluster.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THISPAGE
unclassified

17. LIMITATION OF
ABSTRACT

Same as
Report (SAR)

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2. COMPUTING ENVIRONMENT

Proper tools are required to perform comprehensive data
analysis at scale. An interactive environment is required,
and to achieve this, an analyst needs to be able to 1) flex-
ibly and rapidly develop and update algorithms, methods,
and visualizations, and 2) apply these algorithms against the
entire data set and receive results in a reasonable amount of
time. Hardware and software environments must facilitate
these requirements. In this section we introduce the Divide
and Recombine (D&R) approach to large-scale data analy-
sis, describe its components, and provide information on the
implementations we have successfully used in our analyses.

2.1 Divide and Recombine

Divide and Recombine (D&R) is a statistical approach to
analysis of large complex data [7]. In D&R, the data are di-
vided into subsets in a statistically meaningful way, analytic
methods are applied to each subset in an embarrassingly
parallel manner, and the results of each method are recom-
bined to form a result for the entire data. Analytic meth-
ods can be either visual or statistical. For a visualization
method, the recombination is a visual display comprised of
panel views of each subset [10]. For statistical methods, the
recombination result is numerical. A simple example of a
statistical recombination method is applying a logistic lin-
ear regression independently to each subset and combining
the coefficients from each model fit by taking their mean.
There is much ongoing research in valid recombination ap-
proaches. An example of an approach that fits into the D&R
analytical recombination paradigm and covers a wide range
of statistical methods is the Bag of Little Bootstraps [12].

Data can be divided in different ways for different anal-
ysis tasks. Many divisions are determined by splitting the
data according to combinations of categorical variables — a
natural division choice. Examples of such divisions are parti-
tioning by location, time, or experimental subject. Another
division approach is a random or stratified random parti-
tioning of the data. Division operations are typically very
expensive, as the entire data set is being read in and written
back out into a new partitioning. Once a division is created,
it persists and is hit repeatedly with recombination meth-
ods throughout the course of the analysis. Recombinations
are typically much less expensive, since they typically result
in a great reduction of the data. The general approach in
D&R is to choose a good division and then apply multiple
recombinations to that division.

The ultimate goal of D&R is to provide a statistically
sound methodological approach to large complex data that
provides computational feasibility and practicality, making
available libraries of 1000s of single-core statistical method
implementations that might be infeasible or impossible to
rewrite in a parallel version. This point is critical particu-
larly in open-ended data analyses, where the correct models
and methods to apply are determined by the data, and time
cannot be wasted implementing a sophisticated exact par-
allel version of an algorithm only to find out that it is not
adequate for the data. The tradeoff for increased produc-
tivity and greater access to libraries of statistical methods
can sometimes come through an approximate analytical re-
sult rather than an exact one, although in our various ex-
periments we have repeatedly found this discrepancy to be
negligible.

2.2 D&R Storage and Computation

The foundation of D&R is key-value data stores for dis-
tributed storage of the divided data, and MapReduce for
parallel computation on the data. Divided data are stored
as key-value pairs, where the value of each pair is one divi-
sion of the data. This provides flexibility in the structure
of the data objects for each subset, and is a natural storage
mechanism for MapReduce processing.

MapReduce provides a versatile high-level parallelization
to solve many data-intensive problems through use of user-
specified Map and Reduce functions [6]. A MapReduce job
begins by taking the input data, which is a collection of
key-value pairs, and applying a Map function to these pairs
independently. Each input pair is assigned to a processor,
which computes the map function and returns a new key-
value pair. All output values associated with a specific key
are grouped together and processed by a Reduce function,
which produces a collection of final key-value pairs. Reduce
functions are also independently computable and are exe-
cuted in parallel. This process is illustrated in Figure 1.

| Input | Input | Input | Input |
L LN\
(Map) (Map) (Map) (Map)
v v ' v

| Shuffle/sort: group by map output keys |

; Reduce)
N

| Output | Output |

Reduce

Figure 1: Overview of the MapReduce paradigm.

MapReduce is a natural processing engine for D&R. Par-
titioning of the data in the division step is achieved through
one or more MapReduce operations. Recombination is usu-
ally a more simple MapReduce operation where sometimes
the reduce phase is omitted or is a simple collation of map
outputs. The majority of analyses in D&R are approached in
terms of thinking about divisions and recombinations as op-
posed to MapReduce, and a domain-specific language that
hides the MapReduce details is under active development
that simplifies the coding of D&R tasks significantly [9].
However, sometimes we are interested in division-agnostic
all-data summaries or computations, in which case we use
MapReduce directly.

2.3 D&R Software Environment

In this work, we use the Hadoop implementation of MapRe-
duce supported by the Apache Software Foundation [8]. It is
the standard open-source MapReduce framework. It hides
complexities of job scheduling and tracking, data distribu-
tion, system architecture, heterogeneity, and fault-tolerance.
Hadoop also provides a distributed key-value storage system,
the Hadoop Distributed File System (HDFS).

While Hadoop is a good choice for distributed D&R com-
putations, writing analysis code in its native language, Java,
does not satisfy the requirement of rapid prototyping and
interactive programming necessitated by the iterative anal-
ysis process. The interactive interpreter-based R statistical

language provides an excellent environment for rapid proto-
typing of data analysis routines. R has excellent capabilities
for exploratory analysis, visualization, and modeling, includ-
ing a wealth of statistical routines and over 4000 user con-
tributed packages [4]. The R and Hadoop Integrated Pro-
gramming Environment (RHIPE) is an open-source effort
that allows data analysts to write MapReduce code in R to
be processed by Hadoop [16]. This package manages all the
details of Hadoop MapReduce, including data input/output,
data serialization, job submission, and job monitoring, with-
out ever leaving the R console. While R and Hadoop are not
new technologies, their combination is a breakthrough for
promoting detailed, comprehensive analysis for data analy-
sis in massive databases, and ultimately lets the user focus
on thinking about the data rather than the complexities of
the distributed computing environment.

2.4 D&R Hardware Environment

Traditional Hadoop clusters allow for both on-demand
compute resources and persistent, always-accessible storage.
Storage is facilitated by the HDF'S, and on-demand comput-
ing is facilitated by Hadoop’s inherent multi-user architec-
ture through job and task scheduling.

Unfortunately, we were not able to access a dedicated
Hadoop cluster for our work. Instead, we utilize an insti-
tutional HPC cluster with modifications that get us closer
to the requirements of interactive data analysis. This clus-
ter consists of over 600 32-core nodes, connected to a 4 PB
Lustre data store, although a typical allocation used for this
work was a substantially smaller subset of the nodes. Our
data resides on the Lustre high performance, distributed file
system, which is accessible by all nodes, as opposed to be-
ing distributed across local disks as is typical for HDFS.
High throughput network connections enable remote access
at speeds theoretically comparable to local disk.

Launching a job consists of running a script that allo-
cates the nodes, and instantiates a Hadoop cluster across
the nodes. This process requires only a matter of seconds
and therefore does not add much tedium to an interactive
analysis requirement. Once the Hadoop cluster-on-demand
is running, we login to the master node, launch R, load the
RHIPE package, and have an interactive environment to run
our MapReduce jobs. Although nodes are allocated and
deallocated for each job, the data stored on Lustre persists.

Throughout the course of our analysis, we ran hundreds of
RHIPE MapReduce jobs over the 2 TB data set using any-
where from 10 to 50 compute nodes, configured to execute
no more than 20 simultaneous tasks per node. Run times
ranged from 10-60 minutes. Most operations involved a read
of the complete data set, with the associated computation
time being negligible in comparison to the I/O. The longer-
running jobs involved large amounts of data being shuffled
between the map and reduce phase, as well as large out-
puts written to disk. For example, the division of the data
into true 5-minute blocks. Beyond the basic Hadoop tuning
parameters, we have not made extensive investigations into
tuning the performance of our jobs.

3. POWER GRID DATA

The analysis presented here is part of a larger project
in which we are building a queryable meta-data repository
of interesting events in large-scale power grid data for use
in power grid decision support systems. The data analysis

aspect of the project contributes to the meta-data repository
by finding these interesting events.

This section provides a description of the power grid data
we are working with as well as the pre-processing steps and
initial division we created for analysis.

3.1 Data Description

The data in our analysis consists of measurements taken
by Phasor Measurement Units (PMUs) residing at various
substation locations on the power grid. Each PMU con-
tains between 3 and 11 sensors, with each sensor measur-
ing a variable such as frequency, voltage, current, or phase
angle. These sensor variables, as well variables such as sta-
tus flags and location-specific meta-data are disseminated
in a continuous data stream, reporting measurements at 30
times-per-second. PMUs use a highly accurate global clock
to ensure all data records are time-synchronized.

Our data set spans ~1.5 years for 38 PMUs. At 30 mea-
surements per second, this amounts to about 1.5 billion time
points at which measurements are taken. The number of in-
dividual measurements taken by a single PMU at a single
time point varies from 6 to 22 (some variables are tuples).
Thus a single PMU can report up to 33 billion records over
this time period. In binary format, the data is 1.9 TB in size.
While this is a relatively small data set by today’s standards,
PMU data is expected to grow significantly in the coming
years, with data sets reaching the 100TB — 1PB level. Thus,
the scalability of analysis algorithms is a significant concern.

We focus on frequency throughout this paper. Each PMU
reports one frequency series, giving a total of ~53.7B sensor
records to work with. Frequency is a measure of the cycles
per second of current flowing through the wire. It is an
indicator of the grid’s ability to respond to changes in supply
and demand of electricity. Frequency should always be close
to 60 Hz.

3.2 Data Preparation

The raw data consists of about 157,000 binary files, each
typically containing all PMU measurements for a 5-minute
time interval. This raw data is transformed into a Hadoop-
friendly key-value pair format, with the key being the start
time of the reading and the value value being a matrix of
the data corresponding to that file: each row corresponds
to a specific time and each column corresponds to the value
of a specific sensor’s measurement for one variable at that
time. The resulting matrix typically has 9000 rows, corre-
sponding to the number of 1/30th second records generated
every five minutes, and 555 variables, corresponding to the
6—22 measurements recorded by each of the 38 sensors that
we are tracking.

The events we are interested in finding in this data set
are localized in time, and their lifespan is typically on the
order of seconds. As such, time is the obvious choice for
the conditioning factor in our division, allowing us to create
data subsets consisting of temporally contiguous data. We
determined a reasonable data size for an individual subset of
data to be 5 minutes. This range is long enough to capture
events and short enough that the individual block size is not
too large in memory. The raw was already almost divided
in this fashion, but the data did not always partition along
5-minute intervals, so we ran a division MapReduce job to
push each observation into the appropriate 5-minute time
block. For example, an observation that occurs at 2010-01-

01 12:32:23.5 would be assigned to the group starting with
time 2010-01-01 12:30:00.0. The 5-minute time as a numeric
Unix time value was chosen to be the output key, with the
associated data as the value. The output of this MapReduce
job is a special type of Hadoop file type called a map file:
map files can be queried by key, so by setting the key to the
date and time allows the data of interest to be easily and
quickly retrieved.

To keep the data compact, we stored frequency as an off-
set in thousandths from 60 Hz, e.g. a value stored as —1
corresponds to a frequency of 59.999 Hz. This is how the
raw data is stored, and this is the finest resolution at which
the frequency was reported. Storing the data in this way al-
lows us to use an integer instead of a floating-point number,
which reduces the file size. The cost of making the conver-
sion to Hz on each read is more than offset by faster I/O for
a smaller file.

In this paper, each of the 38 PMUs is labeled using a
two-letter symbol.

4. ANALYSIS METHODS AND RESULTS

A general approach to exploring a new data set in D&R is
to first compute and visualize summaries of the subsets with
a simple summary recombination. We study the properties
of these calculations and identify subsets of the data that
demonstrate interesting characteristics and explore those data
subsets in detail. In most cases, these steps generate data
sets small enough that we are able to perform the detailed
analysis on a local workstation. If some subsets of the data
represent an event of interest, such as bad data, we pull
some of the subsets to our local R session, apply methods
to try to capture the behavior of interest, then apply that
method across the entire data set, using RHIPE, and evalu-
ate the results. We then repeat this process, generating new
statistics based on our previous analysis of the data.

Initial inspection of the PMU data gave a strong indi-
cation that bad data beyond what we were initially led to
believe was present in the data. This prompted an in-depth
investigation for bad data, and led to identification of several
data quality issues. This work had to be carried out prior
to any subsequent event detection algorithm development,
as the bad data severely interferes with the event detection
algorithms and can lead to a large number of false-positives.
In our data cleaning efforts, we took an extremely careful
and conservative approach to filtering data, ensuring that
there is effectively no chance that we are eliminating valid
data records when performing our data cleaning.

This section describes three classes of data cleaning tech-
niques we discovered and applied against our data set, and
then describes two event detection algorithms we developed
after cleaning the data. The purpose of this section is to
illustrate the necessity and nuances of analyzing real-world
large-scale datasets as well as illustrate the D&R toolset in
action.

4.1 Overlooked Flags

Each PMU at each time point reports a flag indicating the
status of the measurement at that time. Domain experts
stated flag 130 indicates a bad data point being recorded.
When a bad data flag is present, the corresponding fre-
quency value is reported as —1 (thousandth offset from 60
Hz), which unfortunately translates to a very legitimate fre-
quency value, 59.999 Hz.

One of our initial exploratory computations was to look
at the distribution of frequency for each PMU. A good way
to do this is to compute quantiles and look at quantile plots.
Taking advantage of the frequency being reported as a dis-
crete integer value (thousandth offset from 60 Hz), we ap-
plied a division-agnostic MapReduce to compute quantiles
by tabulating the number of observations at each unique
frequency offset for each PMU. The Map task tabulates the
frequency values for each PMU and emits the PMU and fre-
quency value as the key and the count as the value. The Re-
duce task collects the counts for each unique key (PMU) and
sums them. This results in a histogram of frequency, which
we can essentially integrate to obtain quantiles. For many
PMUs, the distribution of frequency looked like a Gaussian
distribution, but some exhibited a behavior in which value of
59.999 Hz occurred much more frequently. Figure 2 shows
a normal quantile plot of frequency for two PMUs. The
quantiles for the data are plotted against the quantiles for a
normal distribution with mean and variance matching that
of the data. PMU AR represents a typical PMU, while PMU
BA illustrates data with the more abundant 59.999 Hz value,
making up over 40% of the observations.

59£96 59198 60£00 50102 60£04
PMU BA

1 1 1

I
PMU AR

60.04 | 7 o -
60.02 =
60.00 -

59.98 — r

Frequency Quantiles

59.96 — ° r

5994 T T T T T T T T —

59.96 59.98 60.00 60.02 60.04
Normal Quantiles

Figure 2: Normal quantile plot of frequency for two
PMUs.

Since flags for bad data report a value of 59.999 Hz, we sus-
pected that taking flags into account might provide insight.
We performed the same tabulation of frequency counts, but
this time for each PMU and flag combination. Figure 3
shows the distribution of frequency deviation by flag for
PMU AZ. The dashed line is used to highlight the distri-
bution corresponding to a frequency offset of —1. For PMU
AZ, other than flag 130 we see three other flags for which ef-
fectively all observations are —1, suggesting that these flags
also indicate bad data. We validated that these flags are
indeed bad data indicators by viewing the frequency time
series where these flags are set and seeing that the corre-
sponding —1 values deviate significantly from neighboring
time points. We also obtained confirmation from domain
experts.

It is interesting in Figure 3 that the frequency distribution
for flags 2 and 3 looks Gaussian except for the spikes at zero.
In both cases, there are no values for a frequency of —1.

Accounting for the extra flags removed about 8.135B bil-
lion points from the data. This figure is skewed by one PMU
which had 100% bad data. Not counting that PMU, we re-
moved 6.728B records.

4.2 Repeating Values

values other than -1 ——

value=-1 ~ ------
40 20 0 20 40
1 1 1 1 1 1 1 1 1 1
8 .
g]
H E
TN —Hm
o e i
? 4 5 _|o
&S i K
=30 I mHHHHH HHHHHHM g | mmHHHHH‘ HHHHHHHH\H ““““
] &
' 4 '
8 o ; 2 |o ;
‘E S N ' < A(\I '
S & & '
2 o |5 < s
O B 1&
= =
8
. 3
s S
g 8
o En
g |® 1™
g 1 —
& ¢ 15
g4 &g
= d=
]
o | ¢4 :
T T T T T © T T T T T

-40 -20 0 20 40

Frequency (thousandth deviation from 60 Hz)

Figure 3: Distribution of frequency offset counts for
PMU AZ, broken down by flag.

While we dealt with abnormally high levels of —1 values
due to bad flags, we also noticed some cases of an unusually
high number of zero values, both in quantile plots and fre-
quency distribution plots. Close-up looks at frequency time
series for individual subsets revealed what appears to be ab-
normally long sequences of repeated zeros. The frequency
signal should be changing in response to constant changes
in the environment and should not remain constant for very
long. Thus, long sequences of repeated values are suspect.

To better understand the normal sequence length of re-
peated zeros in the data, we applied a recombination method
that calculated the distribution of the run length of repeated
zeros for each PMU within each 5-minute block. Because
each computation occurs on a single 5-minute window, the
largest possible sequence length is 9000 (5 min * 30 records /
second). For our purposes, this is acceptable because we are
looking for impossibly long sequences of values, and a value
repeating for even one minute or more is impossibly long.
We do not need to accurately count the length of every run,
only identify those repetitions that are too long to occur in
a correctly working system. Further, if a sequence happens
to slip by the filter, for example because it is equally split
across files, there is little harm done. An exact calculation
could be made using MapReduce, but the additional algo-
rithmic complexity is not worthwhile in this case.

Figure 4 shows the zero run length distribution for two
PMUs. This distribution is very long-tailed and is thus dis-
played on a log-log scale. The distribution for both PMUs
is very similar, with the count trailing to zero near the run
length of 10 seconds. However, we see that PMU AS has
observations occurring outside of the region where the dis-
tribution trails to zero.

We noticed that beyond the very short sequences of re-
peats, the tail of the run length distribution behaves in a
way similar to the tail of a geometric random variable with
mass function

Pa—ky =Pl NN)

(L=p)N=t’

The solid black line in Figure 4 indicates the fit of the ge-
ometric tail distribution (p = 0.04 and 0.03 for AS and BI
respectively). We can use this observation to set limits based
on the estimated geometric parameters for which we would
likely never expect to see a run length exceed. PMU AS in
Figure 4 shows several cases well beyond the tail of a legiti-
mate distribution. These sequences of well over 45 seconds
correspond to bad data records.

1 1 1

1 1 L1
PMU AS PMU BI
1e+07 I

1e+06 -
1le+05 -
10000 — -
1000 — -
100 — -
10 -

1 -
T T T T T T T T
0.03333 1 510 45 0.03333 1 510 45

Length of Sequence (seconds)

1

Number of Ocurrences

Figure 4: Distribution of run length of repeated ze-
ros for two PMUs.

This is a good example of how data analysis can provide
information that is perplexing to subject matter experts.
A consecutive run length of even 3 seconds for a frequency
measurement was regarded as inconceivable by experts, but
based on our analysis it is plausible and does occur.

We repeated this analysis for all repeating value sequences
(not just zeros), and eliminated 123 million records from the
data set.

4.3 White Noise

Applying the event detection algorithm described in Sec-
tion 4.4 led to the discovery of more bad data. A prevalent
example was where one PMU reports what appears to be
white noise while the other PMUs are reporting valid data.
What made these hard to detect in prior exploratory analy-
sis was the fact that the white noise typically fell within the
acceptable frequency range, and thus this time-local behav-
ior was washed out by summary statistics. Figure 5 shows
a 10-minute time series plot of frequency for three PMUs.
PMU AX exhibits white noise. The other frequency series
tend to behave as highly autocorrelated processes fluctuat-
ing around 60 Hz.

We verified with domain experts that the white noise in-
deed is indicative of bad data. To remove white noise data,
we employed the Box-Ljung test statistic [13]. This test
determines whether any of a group of autocorrelations is
significantly different from zero. With white noise, all au-
tocorrelations should be close to zero. For a time series of
length n with #x denoting the sample autocorrelation at lag
k, the test statistic is computed over m lags as

Q) =n(n+2) 3" b

k=1

(2)

and is approximated by a x? distribution. To get a good
sampling of lags, we chose m = 15 and applied the test
statistic to each frequency series within each 5-minute block.
Tests that report significant p-values correspond to the le-
gitimate, highly-autocorrelated frequency series, and in our
case were virtually zero, while non-significant (using p >
0.05) correspond to white noise. Using this rule, even after

LTI

59.98 59.99 60.00 60.01

PMU AK

Frequency (HZ)
59.98 59.99 60.00 60.01

PMU AX

59.759.859.960.060.160.260.3
1

T T
09:16 09:18 09:20 09:22 09:24
Time

Figure 5: 10 minutes of frequency data for three
PMUs.

all of the other bad data had been filtered, we removed 25
million records.

4.4 Frequency Deviation Event Detection

After performing the initial data cleaning, we began look-
ing for specific events of interest. From discussions with do-
main experts, we learned that one type of interesting behav-
ior occurs when the difference between time-synchronized
frequency for two locations is significantly high. As seen in
Figure 5, the frequency at different locations typically be-
haves in the same way at any given time (see PMUs BD
and AK). In order to determine what signifies a signifi-
cant frequency deviation between two frequencies, we inves-
tigated the distribution of the difference between all pair-
wise combinations of PMUs. We calculated several statis-
tics on the differences, including quantiles near the tail end
of the difference distribution. Instead of a simple tabula-
tion of data within each subset, we are transforming the
input data into pairwise groupings and then performing the
calculations across each group. This is a good example of
something that is trivial to implement in MapReduce (and
all the more simple using RHIPE), but which might not be
so straightforward otherwise.

There are 37 sensors reporting good frequency data, so
there are (327) = 666 possible PMU pairs. Figure 6 shows the
sorted 99th percentile value for the distribution of the fre-
quency difference for each pair. It is interesting that certain
pairs have a very tight distribution at the lowest end, where
some time-synchronized pairs are within 1/1000th of each
other 99% of the time, while other pairs have a frequency
difference whose tail extends five times further. This is due
to geographical distance between the PMUs. A multidimen-

sional scaling using the 99th percentile as a distance metric
constructed a map that matched the geographical map of
PMU locations quite closely.

600 -
400 -

200 — -

o i

T T T T T
0.001 0.002 0.003 0.004 0.005
99th Percentile Frequency Difference (HZ)

Pairwise Difference Index
(ordered by 99th percentile)

o
1

Figure 6: 99th percentile of absolute pairwise fre-
quency difference for 666 PMU pairs.

We used the median and standard deviation of the 99th
percentile calculated at each 5-minute interval of the pair-
wise differences to choose limits beyond which frequency dif-
ferences are deemed to be significant. We verified these cut-
off limits visually. The initial event detection algorithm was
to find every case when any pairwise difference at any time
point exceeds the specified limit for that pair. This resulted
in the detection of spurious singleton differences. However,
the cases where the deviation is persistent across time are
significantly more interesting. Therefore, we adapted the
algorithm to filter the results based on the length of time
for which the difference is persistently of the same sign, re-
quiring a duration of at least 3 seconds. A recombination
job took each PMU pair inside each 5 minute interval and
looked at the frequency difference for sequences matching
these criteria, recording details when events were found.

The algorithm returned 73 events, which can be grouped
into 6 categories. A representative event of each type is
shown in Figure 7. For time scales in the sub-minute range,
the x-axis is labeled in units of seconds (e.g. 00, 15, etc.)
whereas when the event spans multiple minutes, the x-axis is
expressed as time (e.g. 16:45). The y-axis labels (frequency)
are omitted in the interest of space but are comparable for
each event. Each line represents a different PMU.

Event 1 is an example of a generator trip. When a gener-
ator trip occurs, the effect is a sudden drop in the frequency
across the grid, which gradually returns to a stable state
after automated controls kick in. These events can cause
opposing oscillations across groups of PMUs as seen imme-
diately after the initial frequency drop.

The general pattern in Event 2 is characterized by one
PMU jumping off from the pack and following the general
shape of the others with a positive or negative offset. Typ-
ically a frequency disturbance at one location impacts the
frequencies at all other locations, which may indicate that
this type of event is a more sophisticated “bad data” case.
However, it is unique enough to warrant extra scrutiny. Sub-
ject matter experts are currently working on understanding
this type of event. Similar to Event 2, the pattern in Event 6
is characterized by a jump in one direction directly followed
by a jump in the opposite direction.

Event 3 is characterized by a spike in activity (the spike
well exceeds the plot region) followed by opposing oscillatory

Event 1 Event 2
T T T T T T T T T T T T
00 15 30 45 00 16:45.00 16:46:00 16:47:00 16:48:00
Event 3 Event 4

Frequency (HZ)

10 15 20 25 30 22:28:00 22:29:00 22:30:00 22:31:
Event 5 Event 6
e
i
m‘ TR ‘»..
s T i
' I
i
i
i
T T T T T T T T T T
17:56 17:58 18:00 18:02 18:04 18:06 40 45 50 55
Time

Figure 7: Six examples of interesting events from
the frequency deviation event detection algorithm.

behavior for different groups of PMUs. What makes this
type different from Event 1 is that it is not set off by a
sudden drop in frequency, but by a spike. According to
domain experts this is indicative of a line fault.

Events 4 and 5 are unique instances across the entire
data set. Event 4 shows groups of PMUs jumping off from
the main frequency signal and sporadically missing data in
chunks of time. Event 5 shows a single PMU operating at
a different frequency that is time-shifted from the rest for
about 10 minutes, a likely case of a bad timestamp. The
behavior for both of these events could potentially be in-
dicative of a grid island, where some groups of locations
are operating independently of the others. However, based
on previous island events that subject matter experts are
familiar with, these events do not seem to have the same
characteristics, and have been deemed to be another special
case of bad data.

Overall, the results show events where the interesting pat-
terns such as sudden drops or opposite oscillations occur at
the sub-second level. This underscores the importance of
looking at the entire data set and not resorting to a more
coarse time aggregation, such as the mean frequency over
multiple seconds or minutes, in which case many of these
features would be washed out. This is only possible with
a scalable environment capable of analyzing the entire data
set.

It worth noting that prior to applying the data cleaning
filters, the application of the frequency deviation event de-
tector to the raw data returned tens of thousands of events.
After account for bad data, there are only 73 distinct events
— a dramatic difference that underscores the importance of
understanding the data and accounting for data integrity.

4.5 Generator Trip Event Detection

As noted, the frequency deviation detection algorithm
turned out several events that were identified as experts to
be generator trips, such as Event 1 in Figure 7. We studied
the properties of these confirmed generator trip instances to
determine features and algorithms to detect trips.

As we saw in Event 1 of Figure 7, generator trips are char-
acterized by the sudden and steep decline in frequency that
occurs when a power generator goes offline, followed by a
gradual increase back to a stable frequency. We captured
this behavior by segmenting the data into increasing and
decreasing sequences and computing features about these
sequences, such as the steepest slope in each segment. De-
termining the low-frequency change-points of slope in the
frequency series was done using the robust nonparametric
regression method loess [3], which is essentially a low-pass
filter that smooths out high-frequency fluctuations.

Nonparametric local smoothing methods are not reliable
at endpoints, and therefore applying the method indepen-
dently to each 5-minute subset would yield poor smoothing
at the beginning and end of each 5 minute segment. There-
fore, we developed a more suitable division, in which we
added an extra 30 seconds to the beginning and end of each
5 minute period, resulting in overlapping divisions. We chose
30 seconds because a 14 second moving time window for the
local smoothing was determined to be an appropriate choice,
and having an extra 30 seconds on each side would provide
enough extra data to get good results with some leeway in
case we later settled on a slightly bigger window size.

Operating on this division, we applied the smoothing and
sliced the data into monotonically increasing or decreasing
segments. An illustration of the smoothing and segmenting
is shown in Figure 8. The gray points in the background
represent the actual frequency values for the 38 PMUs. The
black lines represent the smoothing, with the segment break-
points indicated with a vertical line separating increasing
from decreasing, and with decreasing segments drawn with
a thicker line.

1 1 1 1 1
60.00 — -

H\/"

59.95 — -

Frequency

59.90 - V‘/ L

59.85 — -

T T T T T
03:30:30 03:31:00 03:31:30 03:32:00 03:32:30

Time

Figure 8: Illustration of smoothing and segmenting
frequency data for generator trip feature construc-
tion.

After obtaining segments, we collected features for each
segment with a recombination procedure that calculated fea-
tures such as the maximum slope of the segment, the change

in frequency from beginning to end of the segment, and the
duration of the segment. We then visually explored the dis-
tributions and relationships between these features in many
ways, mostly through the use of hexagonally binned scat-
terplots [2]. For the maximum slope feature, we noticed a
somewhat symmetric distribution with an additional small
mode on both tails. We selected subsets of our data that cor-
responded to segments with slopes in the lower-tail mode of
the distribution and gave these more intense scrutiny, since
we expect generator trips to have a large negative slope. We
selected about 2000 time windows containing very negative
slopes and presented them to domain experts to categorize
as generator trips or not. This oracle-classified data along
with randomly-selected non-generator trip time windows be-
came a training set against which we applied machine learn-
ing algorithms to classify events as generator trip or not.
After studying several classification approaches, we found
that a simple rules-based cutoff method based mainly on the
maximum slope feature yielded excellent results while being
very easy to interpret and implement in real-time processing
system.

This event detection algorithm was implemented as a proof-
of-concept in an agent execution platform, Volttron [1]. Once
an algorithm has been validated and is ready to be deployed,
a different set of considerations come into play from a HPC
point of view, and the ability to rapidly process large vol-
umes of historical data often becomes less of a concern.
But had we not been able to work with ease with the large
amount of historical data, we would not have been able to
develop and validate the algorithm.

5. SCALABILITY STUDY

Although the size of the actual data we analyzed in this
work is only 2 TB, we anticipate a significant increase in the
data volumes of the future as many more PMUs are rolled
out. To evaluate how our infrastructure will work in that
new environment, we replicated our original data set to cre-
ate test data sets of 4, 8, 16, and 128 TB. 128TB represents
over 43,000 PMU months of data, and approximates the an-
ticipated monthly data stream from all PMUs within the US
when the grid update is completed in the 15 years. Hadoop
has been routinely used for data sizes much larger than this,
but our goal is to (a) ensure that nothing in the design of
RHIPE inhibits scalability, and (b) understand how our sys-
tem configuration, described in Section 2.4, scales.

We vary the number of nodes used in computation. We
tested node configurations of 8, 16, 32, and 64 nodes, and in
the case of the 128 TB dataset, 128 nodes. For each of these,
an additional node to function as the Hadoop namenode was
added. Although the nodes have 32-core processors, we ran
the tests at an underutilized rate of 10 maximum map tasks
and 10 maximum reduce tasks per node. There are a large
number of Hadoop parameters and we note that parameter
settings we chose are not necessarily optimal.

We ran a simple analysis on the data, which tabulates the
flag frequencies and aggregates the results for each PMU.
The map step in this task greatly reduces the data, so much
less data is being written to disk than is being read. This
is typical for most of our jobs once the data was divided
properly.

Two graphs showing the timings for running this job are
shown in Figure 9. The plot on the left shows that for a given
set of nodes, the compute time increases almost linearly with

8nodes -—-—-
16 nodes ------
32 nodes
64 nodes

B 960 -
N\
S
o 480 | T—e _
L)
\~
- 240 N\, -
N\

f~ —~ L)
g 3 LAY
g B le RN i
£ £ 3 \
€ £ NG
° - o 60 (\ L% e -
£ £ N
IS = N

_ 30 - N p SN |

\\
~ - <
- 15 £ -
_ 75 |

T T T T T T T
2 4 8 16 32 64 128 8 16 32 64 128

Data Size (TB) Number of Nodes
Figure 9: Scalability test results: Time vs. Data
Size, by Number of Nodes (left); Time vs. Number
of Nodes, by Data Size (right).

an increase in the data size. Looking at the data differently,
however, shows that our infrastructure is not providing the
ideal scaling we desire. The plot on the right shows for a
fixed data set size, the reduction in computation time is not
commensurate with the additional resources provided. For
the smaller data sets, this result is entirely expected because
the job quickly becomes I/O bound and the analysis time is
dominated by the combination of the fixed overhead cost of
starting additional compute nodes and the constant time re-
quired to stream the data off of the file system. The reason
for the sub-linear scaling is less obvious for the larger data
sets. We suspect that this is largely due to the impact of
using the Lustre file system to store the data as opposed to
local disk. This increases network bandwidth and limits the
throughput an individual node can obtain. While other fac-
tors also likely have an impact on these timings, for example
the jitter caused by other applications running concurrently
on the cluster, this factor would explain why the first chart
appears to show much better scaling than the second. We
expect to continue investigating these results with the goal
of isolating the impact of the various factors, but these pre-
liminary results raise some questions about the scalability of
HPC clusters for Hadoop-based data-intensive computing.

6. RELATED WORK

Power systems research most related to this work is the
Frequency monitoring Network (FNET) project, under which
algorithms for detecting interesting events in frequency data
have been developed, including islanding, generator trips,
and oscillatory behavior [17].

There is a great deal of literature on data cleaning. A
formal description of data cleaning problems and methods
to handle bad data can be found in [14]. Methods that
target data cleaning particularly focused on sensor data can
be found in [11]. Finally, an excellent book on data cleaning
using exploratory data mining techniques can be found in
[5].

While there are many R solutions for parallel processing,
the field of big data with R is relatively new. RHadoop is
a mature product from Revolution Analytics that uses R
with Hadoop Streaming [15] and provides functionality very

similar to RHIPE. We use RHIPE in our analyses because it
is more integrated with Hadoop (being implemented in Java
Hadoop vs. Hadoop Streaming) — providing more flexibility.
Its data serialization format is also more compatible with
non-R applications, which our work is integrating with.

7. CONCLUSIONS

The D&R methodology and computation environment en-
abled us to perform ad hoc exploratory analysis with a large
set of historical data. We were able to discover various is-
sues with the data and build precise algorithms to account
for the erroneous activity. After accounting for the bad data,
we were able capture behaviors of interest in the data and
build event detection algorithms for them. All of this ac-
tivity was done effectively due to our ability to look at the
data in great detail and compute over the entire data set.

Many of the data quality issues we uncovered in the data
would not have come to light if we had only looked at a
subset of the data, or had we only looked at high-level ag-
gregates of the data. Our use of the D&R tools to perform
the iterative process of initially analyzing the entire data
set to identify interesting data subsets, investigating those
smaller data sets in detail to develop detection algorithms,
then applying those algorithms across the entire data set
was highly effective.

It is important to note how unique each type of bad data
is. Simplistic data cleaning techniques, such as thresholding,
would not have been able to identify all of the bad data el-
ements we encountered. Similarly, performing analysis over
a random sampling of the data would have missed many of
the patterns that defined the erroneous records.

Out iterative analysis approach would have been much
more difficult to achieve without the ability to quickly de-
velop, adapt, and deploy code in a distributed fashion. The
ability to not only generate and adapt code for a new task
in a matter of minutes, but also to easily deploy it over sev-
eral compute nodes and receive results in tens of minutes is
essential to achieving an iterative analysis process.

The analyses here have only focused on one variable, fre-
quency. Future analyses will look at other variables, partic-
ularly phase angles, as it is thought that phase angles hold
a great deal of information about the stability of the power
grid.

8. ACKNOWLEDGMENTS

This work was supported by the Pacific Northwest Na-
tional Laboratory Future Power Grid Initiative and a grant
“D&R for Large Complex Data” from the DARPA XDATA
Program, and was performed using PNNL Institutional Com-
puting.

9. REFERENCES

[1] B. Akyol, J. Haack, B. Carpenter, S. Ciraci,
M. Vlachopoulou, and C. Tews. Volttron: An agent
execution platform for the electric power system. In
Third International Workshop on Agent Technologies
for Energy Systems Valencia, Spain, 2012.

[2] D. B. Carr, R. J. Littlefield, W. Nicholson, and
J. Littlefield. Scatterplot matrix techniques for large
n. Journal of the American Statistical Association,
82(398):424-436, 1987.

3]

[4]

[5]

[6]

7]

8]
[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

W. S. Cleveland and S. J. Devlin. Locally weighted
regression: An approach to regression analysis by local
fitting. Journal of the American Statistical
Association, 83(403):596-610, 1988.

Comprehensive R Archive Network.
http://cran.r-project.org/, 2013. Accessed:

2013-04-10.

T. Dasu and T. Johnson. Fxploratory data mining and
data cleaning. Wiley-IEEE, 2003.

J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Communications of
the ACM, 51(1):107-113, 2008.

S. Guha, R. Hafen, J. Rounds, J. Xia, J. Li, B. Xi,
and W. S. Cleveland. Large complex data: divide and
recombine (d&r) with rhipe. Stat, 1(1):53-67, 2012.
Hadoop. http://hadoop.apache.org, 2013. Accessed:
2014-04-04.

R. Hafen. “datadr” github documentation.
http://hafen.github.io/datadr/. Accessed: 2013-08-20.
R. Hafen, L. Gosink, J. McDermott, K. Rodland,

K. Kleese-Van Dam, and W. S. Cleveland. Trelliscope:
a system for detailed visualization in the deep analysis
of large complex data. In Large Data Analysis and
Visualization (LDAV), 2013 IEEE Symposium on.
IEEE, 2013.

S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and
J. Widom. A pipelined framework for online cleaning
of sensor data streams. In Data Engineering, 2006.
ICDE’06. Proceedings of the 22nd International
Conference on, pages 140-140. IEEE, 2006.

A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan.
A scalable bootstrap for massive data. arXiv preprint
arXiv:1112.5016, 2011.

G. M. Ljung and G. E. P. Box. On a measure of lack
of fit in time series models. Biometrika, 65(2):297-303,
1978.

E. Rahm and H. H. Do. Data cleaning: Problems and
current approaches. IEEE Data Engineering Bulletin,
23(4):3-13, 2000.

Revolution Analytics.
http://www.revolutionanalytics.com, 2013. Accessed:
2013-04-10.

RHIPE. http://www.rhipe.org, 2013. Accessed:
2013-04-04.

Y. Zhang, P. Markham, T. Xia, L. Chen, Y. Ye,

Z. Wu, Z. Yuan, L. Wang, J. Bank, J. Burgett, et al.
Wide-area frequency monitoring network (fnet)
architecture and applications. Smart Grid, IEEE
Transactions on, 1(2):159-167, 2010.

